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In this paper we introduce a new algorithm to study some NP-complete problems. This
algorithm is a Markov Chain Monte Carlo (MCMC) inspired by the cavity method
developed in the study of spin glass. We will focus on the maximum clique problem and
we will compare this new algorithm with several standard algorithms on some DIMACS
benchmark graphs and on random graphs. The performances of the new algorithm are
quite surprising. Our effort in this paper is to be clear as well to those readers who are
not in the field.
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Be careful men
Search every cook and nanny

Uh, hook and granny
Uh, crooked fan. . .

uh, search everywhere!
Doc (Snow White and the seven dwarfs,

Walt Disney, 1937)
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1. INTRODUCTION

In the last years Mezard, Parisi, Zecchina(12,13) introduced a class of optimization
algorithms to deal with K-satisfiability problems. Their strategy was based on the
cavity method introduced in spin glass theory a long time ago and in particular on
its zero-temperature version, more recently developed in Ref. 10. An important
ingredient in their approach seems to be the locally tree-like structure of the
interaction graph.

In the case of the clique problem, i.e., the study of the maximal complete
subgraph of a given graph G, we expect to be very far from a tree-like structure
of the interaction graph even locally, for instance when G is a random graph.
We introduce in this paper a new algorithm to treat this problem, based again on
the cavity method but in a completely different way.

This algorithm represents a first step in the application of the cavity idea that
will be developed in a forthcoming paper. On the other hand this algorithm is
sufficiently simple so that its behavior can be studied at least on random graphs
providing some explanation of the difficulty of the problem. The algorithm intro-
duced in this paper represents an heuristical search of cliques in the sense that the
optimality of the result is not guaranteed. For a recent review on the numerical
approach to the clique problem see e.g., Ref. 3 and references therein.

1.1. Definitions

Let G = (V, E) be a graph. A graph g is a subgraph of G, g ⊆ G, if its
vertex set V (g) ⊆ V and its edges E(g) ⊆ E . For any A ⊂ V we denote by G[A]
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the graph induced by A in G:

G[A] = (A, E(G[A])), with E(G[A]) := {(i, j) ∈ E : i, j ∈ A} (1)

We will denote by K(G) the set of complete subgraphs or cliques of G and
by MaxCl(G) the set of maximum cliques in G:

MaxCl(G) := {g ∈ K(G) : |V (g)| = max
g′∈K(G)

|V (g′)|} (2)

where |B| denotes the cardinality of the set B.
We call clique number of the graph G, ω(G), the cardinality of the vertex set

of any maximum clique in G, i.e., ω(G) = |V (g)| with g ∈ MaxCl(G).
There are several versions of the problem of the determination of the clique

number and of the maximum clique set of a given graph G. We recall here the
most cited form.

Clique problem: given a graph G = (V, E) and a positive integer k ≤ |V |,
does G contain a complete subgraph of size k or more? That is, does
ω(G) ≥ k hold?

As it is well known (see Ref. 5) the clique problem is a NP-complete problem.
There are other famous NP-complete problems equivalent to the clique problem
as the vertex covering and the independent set, defined as follows:

Vertex covering: given a graph G = (V, E) and a positive integer k ≤ |V |,
is there a vertex cover of size k or less for G, i.e., a subset V ′ ⊆ V with
|V ′| ≤ k such that for each edge (u, v) ∈ E at least one of u and v belongs
to V ′?
Independent set: given a graph G = (V, E) and a positive integer k ≤ |V |,
does G contain an independent set of size k or more, i.e., a subset V ′ ⊆ V
such that |V ′| ≥ k and such that no two vertices in V ′ are joined by an
edge in E?

The equivalence of these problems is proved for instance in Ref. 5 lemma 3.1
pg.54.

1.2. The Case of Random Graphs

Consider the set G(n, d) of random graphs with fixed density d, i.e. of graphs
G(V, E) having as vertex set V = {1, 2, . . . , n} and in which the edges are chosen
independently with probability d.

To study the size of the largest clique of a graph G(V, E) ∈ G(n, d) one can
argue as follows. Let Yr be the number of complete subgraph with r vertices in a
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graph G(V, E) ∈ G(n, d). It is immediate to show that

E(Yr ) =
(

n

r

)
d(r

2) (3)

Let us consider the value r0(n) of r such that E(Yr ) = 1. Writing (3) in terms
of Stirling approximation and denoting b = 1/d we have that such value r0(n) is
given by

r0(n) = 2 logb n − 2 logb logb n + 2 logb(e/2) + 1 + o(1) (4)

The clique number ω(G) of a graph G(V, E) ∈ G(n, d) tends, for n → ∞,
to be very near to r0(n). More precisely, it is possible to prove the following result
(see Ref. 2): for almost all the graphs G ∈ G(N, d) there is a constant m0(G)
such that for all n ≥ m0(G) and for almost all Gn subgraph of G with vertex set
|V | = n

|ω(Gn) − 2 logb n + 2 logb logb n − 2 logb(e/2) − 1| ≤ 3

2
(5)

Despite the fact that the asymptotic value of ω(Gn) has such a small variabil-
ity, it is well known that the large cliques of a random graph are very difficult to
find. This is due to the fact that the expression of E(Yr ), which has its maximum
for an r that is roughly r0(n)/2, decreases very rapidly when r > r0(n)/2. Hence,
while it is easy (e.g. with a greedy algorithm) to find cliques whose size is of the
order of logb n, the probability that one of such cliques is a subset of a clique with
the size (1 + ε) logb n is of the order of n−α(ε) log n for all ε > 0, and hence is more
than polynomially small (see also Ref. 6).

This difficulty in finding large clique of random graphs has a numerical
evidence even for n quite small, as it will be shown later.

1.3. The Statistical Mechanics Approach

We recall here very briefly the main ideas of the statistical mechanics ap-
proach to combinatorial optimization problems.

The cost function of the optimization problem (OP) can be understood as
the energy function H (x), usually called Hamiltonian, of a statistical mechanics
(SM) model where instances of the OP are considered as configurations x ∈ X
of the SM model. The optimal configurations correspond to the ground states in
the SM language. (See for instance(11)). Ground states in SM are the configura-
tions where the Gibbs measure π (x) = 1

Z e−β H (x) is concentrated in the limit of
zero temperature (β → ∞, being β the inverse temperature); the normalization
constant Z is usually called partition function. This means that to determine the
ground states is sufficient to perform a random sampling at low temperature. To
this purpose we can apply the Monte Carlo method. The main idea of this method
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is to define a Markov chain Monte Carlo (MCMC) on the configuration space X ,
with transition probabilities P(x, x ′) such that the transition probability in n steps,
Pn(x, x ′), of the chain converges to π (x ′) as n → ∞. This convergence is due to
the ergodic theorem if for instance the transition probabilities satisfy a detailed
balance condition w.r.t. the Gibbs measure π :

π (x)P(x, x ′) = π (x ′)P(x ′, x) (6)

The strategy of the MCMC method is then the following

– start from a configuration x0

– look at the random evolution of the chain starting from it, x0, x1, . . . xn ,
for a “sufficiently long time” n

– for the final state xn we have P(xn = x) ∼ π (x).

The main difficulty in applying this procedure is due to metastable states.
Indeed local minima of the energy H (x) can capture the evolution xt of the chain
for very large time intervals if the temperature is low. So the main problem in
applying MCMC method is to define what “sufficiently long time” means.

A strategy to escape the problem of metastable states is to change the tempera-
ture during the evolution of the chain. This is known as simulated annealing. Since
for high temperature the process leaves local minima much easily, one can look at
a suitable annealing in order to avoid to remain captured in metastable states. See
for instance(9) for the use of simulated annealing in optimization problems.

From a rigorous point of view the main point in applying the MCMC method
is to estimate the mixing time of the chain, that is the time n necessary to have
that P(xn = x) and π (x) are sufficiently close each other, uniformly in x0. (See
for instance(7) for precise definitions.)

As an example for the clique problem on a graph G ∈ G(n, 1/2) we can
consider as in Ref. 6 the following MCMC. The state space X of the chain is
the collection of all cliques in G. To each clique x ∈ X we associate a weight
w(x) = λ|x | where |x | denotes the number of vertices of x and λ ≥ 1 is a real
parameter. We can describe this weight in terms of a Gibbs measure π (x) = w(x)

Z
with H (x) = −|x | and λ = eβ . The transition probability P(x, x ′) is different from
zero only if the cliques x and x ′ have a symmetric difference (as sets of vertices)
less or equal to one. In this case if x ′ ⊃ x we put P(x, x ′) = 1

n and if x ′ ⊂ x
we put P(x, x ′) = 1

λn . The probability P(x, x) is obtained by normalization. It is
immediate to verify that these transition probabilities satisfy the detailed balance
condition (6).

For this dynamics Jerrum proves that there exists an initial state from which
the expected time to reach a clique of size at least (1 + ε) log2 n is super-polynomial
in n. The crucial point in this proof is to show that there are few cliques that can
grow up to this size (1 + ε) log2 n. More precisely a clique of size k is called
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m-gateway if there exists a path of the chain going from this clique to a clique
of size m through cliques of size at least k, then it is proved in Ref. 6 that the
density of m-gateways in the set of k-cliques is super-polynomially small for
k = �(1 + 2

3ε) log2 n and m = �(1 + ε) log2 n. Due to the fact that m-gateways
have to be visited in reaching cliques larger or equal to m, then these m-gateways
represent a bottleneck for the dynamics and their low density can be used to prove
that the mixing time is super-polynomial in n.

2. A HAMILTONIAN FOR THE CLIQUE PROBLEM, THE VERTEX

COVERING AND THE INDEPENDENT SET

We consider the space X := {0, 1}V of lattice gas configurations on V ; on
the configuration space (or state space) X we define an Ising Hamiltonian with an
antiferromagnetic interaction between non-neighbor sites:

H (σ ) :=
∑
(i, j)

Ji jσiσ j − h

2

∑
i∈V

σi (7)

where (i, j) is an unordered pair in V × V and

Ji j =
{

0 if (i, j) ∈ E
1 if (i, j) /∈ E

(8)

and h > 0.
It is easy to prove that if h < 1 then the minimal value of H (σ ) is obtained

on configurations with support on the vertices of a maximum clique. First of all
we prove that H (σ ) is minimal on configurations σ such that G(σ ) ∈ K(G). We
denote with the same letter a configuration and its support; for instance when we
write i ∈ σ we mean a site i in the support of σ . Indeed for every σ such that
G(σ ) �∈ K(G) we can write σ = C ∪ A with G(C) a maximum clique in G(σ )
and |A| ≥ 1, then for any i ∈ A we have H (σ ) > H (σ\i). This is due to the fact
that

H (σ ) = H (σ\i) +
∑

j

Ji jσ j − h

2
(9)

and if G(C) is a maximum clique in G(σ ) then
∑

j Ji jσ j ≥ ∑
j∈C Ji j ≥ 1. As a

second step we note that if σ is such that G(σ ) ∈ K(G) then H (σ ) = − h
2 |σ |, so

that we can immediately conclude that H is minimal on the maximum cliques.
If we consider the opposite interaction:

J̄i j =
{

0 if (i, j) /∈ E
1 if (i, j) ∈ E

(10)
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then the same Hamiltonian (7) with interaction J̄ is minimal on configurations
with zeros on a minimal vertex cover and ones on the maximum independet set.

In the case of a random graph G, i.e., when the interaction variables Ji j are
i.i.d.r.v., the Hamiltonian (7) is similar to the Hamiltonian of the SK model. The
main differences are that our configurations are in lattice gas variables instead
of spin variables and the interaction variables have no zero mean. Instead of a
symmetry property we have now a control on the sign of the interaction term of
the Hamiltonian.

Note that we are considering interactions O(1) instead of O(1/
√

n) as in SK,
but these interactions vanish for (i, j) ∈ E . This means that when

∑
(i, j) Ji j =

O(n2), as in the random case with fixed density, we are considering a non-diluted
model.

3. SOME ALGORITHMS FOR THE CLIQUE PROBLEM

We will not furnish here a complete review of algorithms for the clique
problem. We only want to recall that there are two different families of algorithms

• the complete methods
• the heuristic methods

The complete methods are those algorithms that use different clever strategies
to perform a complete analysis of all the possible subgraphs. Even when all the
possible subgraphs are not actually enumerated, the time that these algorithms take
grows very fast with the size of the graph, fact made evident because the clique
problem is NP.

The heuristic methods are those algorithms that do not ensure that the result
is optimal, providing in this way only a lower bound for the clique number. An
exemple of such algorithms is the MCMC discussed in Ref. 6. These are usually
faster algorithms.

In this section we define three different heuristic algorithms for the clique
problem that will be used for the numerical comparison developed in the final
section. The first and the second are “standard” algorithms; the third algorithm is
a MCMC defined by means of the Hamiltonian (7).

In the discussion contained in the numerical comparison we will also consider
three more algorithms: two of them are complete, and are the Cliquer algorithm
(see Ref. 14) and the algorithm introduced in Ref. 15 by Régin based on a very
efficient application of constraint programming. The last is one of the best known
heuristic algorithms, introduced by Battiti and Protasi in Ref. 1.
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3.1. A Greedy Algorithm, G
The first algorithm we introduce is a fast and greedy heuristic, denoted from

now on by G. The underlying idea is the following: start from a configuration σ

with σi = 0,∀i ∈ V and then select at random a vertex j , set σ j = 1 and then
delete all its non adjacent vertices. In the next step another vertex is selected at
random among the remaining vertices and again all its non-adjacent vertices are
deleted. The process stops when it is not possible to select other vertices, i.e., a
maximal complete subgraph is found, i.e., a clique not strictly contained in other
cliques.

3.2. A Dismantling Algorithm, D
The second algorithm, denoted byD in the following, is another fast heuristic.

It starts with an initial configuration σ that has ones everywhere. The algorithm
considers, at each step, the degree of each vertex i with σi = 1 and selects the one
(say j) with the smallest degree. Then it sets σ j = 0 and decreases by one unit
the degree of all its adjacent nodes in the graph and repeats the procedure until
the minimum value of all the degrees is k − 1 where k is the number of sites in
σ with σi = 1, i.e., the sites of a clique of cardinality k. Note that in principle the
resulting clique could be not maximal.

The rationale of this algorithm is to start from the whole graph and then, at
each step, dismantle it vertex by vertex until a clique is found.

3.3. A Monte Carlo Algorithm MC
We can apply the ideas developed in Sec. 1.3 to the Hamiltonian defined in

Sec. 2 for the clique problem. For clarity we consider the Metropolis choice: for
σ ′ �= σ we take

P(σ ′, σ ) = q(σ ′, σ )e−β[H (σ )−H (σ ′)]+ , (11)

where [·]+ denotes the positive part and q(σ ′, σ ) is a symmetric, positive connec-
tivity matrix independent of β with q(σ ′, σ ) > 0 only if σ and σ ′ are different in
a single site.

We note that in the limit β → ∞ and h ∈ (0, 1) fixed, starting from the con-
figuration which is zero everywhere, this algorithm is equivalent to the greedy
algorithm since P(σ, σ ′) = 0 if H (σ ′) > H (σ ). Thus {σ (t)}t∈N is a growing se-
quence of complete graphs. In the case β → ∞ but h → 0 as 1

β
we see that this

Monte Carlo algorithm is equivalent to the Jerrum algorithm on cliques recalled
as an example in Sec. 1.3.
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4. A NEW ALGORITHM INSPIRED BY THE CAVITY METHOD, C
In this section we introduce a new heuristic algorithm to find maximum

cliques of a graph. The key idea is inspired by the notion of cavity field introduced
in statistical mechanics to analyze the ground states, that is configurations mini-
mizing the energy.(11) The cavity method at zero temperature is described in detail
in Ref. 10 in the case of a spin glass on a lattice with a local tree like structure.
This method is equivalent to the replica method and can be used at different levels
of approximation corresponding to the replica symmetric solution and to the one
step replica symmetry breaking level. The main idea is to compute in the limit of
infinite number of spins the value of the energy density of the ground state by an
iterative procedure. Indeed one can study the effect of the addition of a spin or of
a bond to the system looking for equations for the corresponding average energy
shift.

We do not use the cavity method in our algorithm but we use the idea that if
you select a spin the effect of the other spins can be described in terms of a local
field, that we will call cavity field, as in the case of the cavity method.

More precisely, consider the Hamiltonian defined in (7) and consider the
canonical ensemble, i.e., the set of configurations σ ∈ X such that

∑
i∈V σi = k.

Up to a constant we have that H (σ ) = ∑
(i, j) Ji jσiσ j . If for each i ∈ V we define

the cavity field:

hi (σ ) = 1

2

⎡
⎣ ∑

j : j �=i

Ji jσ j + h(1 − σi )

⎤
⎦ (12)

we have immediately that H (σ ) = ∑
i∈V hi (σ )σi . For a given choice of the fields

{hi }i∈V the minimal energy is clearly obtained on the configurations with support
on the sites corresponding to the k minimal values of hi . But here the cavity fields
depend on the configuration itself and then it is more difficult to determine the
ground states. To this purpose we introduce a new Hamiltonian:

H (σ, σ ′, h, k) =
∑
(i, j)

Ji jσiσ
′
j + h

2

(
k −

∑
i

σiσ
′
i

)
(13)

defined on pairs of configurations σ, σ ′ such that
∑

i σi = ∑
i σ ′

i = k, with k ∈ N

and h > 0. The hamiltonian can be rewritten in terms of the interaction of the
configuration σ ′ with each site i (cavity field hi ) in the following way

H (σ, σ ′, h, k) = 1

2

⎡
⎣ ∑

i, j :i �= j

Ji jσiσ
′
j + h

(
k −

∑
i

σiσ
′
i

)⎤
⎦ =

∑
i

hi (σ )σ ′
i (14)

with hi = hi (σ ) defined in (12). Hence the cavity field hi in the site i represents
the number of sites j with σ j = 1 that are not nearest neighbors of the site i plus a
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contribution h that is present when the configuration σ is not supported on the site
i . Note that H (σ, σ, h, k) corresponds to the Hamiltonian (7) in the framework of
the canonical ensemble corresponding to k. We also want to stress that this new
Hamiltonian is non-negative and if k ≤ ω(G) its value is zero (so minimal) only
on pairs of configurations σ, σ ′ such that σ = σ ′ with support on a clique with k
vertices.

The idea of the algorithm is the following: start from a random configuration
σ with fixed k, and choose a new configuration σ ′ picking randomly k sites, each
site having a relative weight wi = e−βhi (σ ) for some β > 0, and define for this
sites σ ′

i = 1, while for the others σ ′
i = 0. Then repeat this procedure iteratively.

After each iteration compute the quantity H (σ, σ ′, h, k). This dynamics defines
a MCMC on X that satisfies the detailed balance condition with respect to the
stationary measure

�σ =
∑

τ e−β H (σ,τ,h,k)∑
τ,σ e−β H (σ,τ,h,k)

(15)

Indeed since each vertex j is chosen to have σ ′
j = 1 with weight wi , the transition

probability of the process P(σ, σ ′) has the following form

P(σ, σ ′) = e−β H (σ,σ ′,h,k)∑
τ e−β H (σ,τ,h,k)

(16)

Due to the symmetry of the couplings Ji j = Jji we have

�σ P(σ, σ ′) =
∑

τ e−β H (σ,τ,h,k)∑
τ,σ e−β H (σ,τ,h,k)

e−β H (σ,σ ′,h,k)∑
τ e−β H (σ,τ,h,k)

(17)

=
∑

τ e−β H (σ ′,τ,h,k)∑
τ,σ ′ e−β H (σ ′,τ,h,k)

e−β H (σ ′,σ,h,k)∑
τ e−β H (σ ′,τ,h,k)

= �σ ′ P(σ ′, σ ) (18)

and therefore �σ is the unique stationary measure of our process.
Note that if the parameter β is very large and k ≤ ω(G), the stationary

measure is concentrated exponentially in β on the σ ’s such that there exists a
clique supported by the configuration σ : actually if the support of σ is not a clique
H (σ, τ, h, k) > 0 for all configurations τ and the probability of the configuration
σ is exponentially small.

4.1. Implementation of the Algorithm C and Some Remarks

on its Mixing Time

To realize a single step of the Markov chain with transition probabilities
defined in (16) we proceed as follows.
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1. Starting from a configuration σ , compute the cavity field hi (σ ) for each
vertex i .

2. To sample the new configuration σ ′ with probability (16) we perform
a Kawasaki-like algorithm η(0), η(1), . . . η(s), . . ., starting at η(0) = σ .
At each step s this Kawasaki procedure is the following: pick randomly
a couple of vertices (i, j) such that ηi (s) = 1 and η j (s) = 0 and de-
fine η(s)(i, j), the configuration obtained by η(s) by exchanging the oc-
cupation variables in the sites i and j . Then η(s + 1) = η(s)(i, j) with
probability e−β[h j (σ )−hi (σ )]+ . Since H (σ, η(s), h, k) = ∑

i∈V hi (σ )η(s)i we
have H (σ, η(s + 1), h, k) − H (σ, η(s), h, k) = h j (σ ) − hi (σ ) so that the
invariant measure of this Kawasaki chain is

�K
σ ′ = e−β H (σ,σ ′,h,k)∑

τ e−β H (σ,τ,h,k)
(19)

as requested in (16).

Since this measure �K
σ ′ is a product measure we note that step 2, i.e., the

Kawasaki procedure, quickly reaches its equilibrium, in a time of order nk. Much
more complicated is an estimate for the mixing time of the chain C. Here we can
only make some initial remarks on this problem.

First of all we note that the function H (σ (t), σ (t + 1), h, k) is a non-
increasing function of t in the limit β → ∞ along a typical path {σ (t)}t of the chain
C. Indeed in the limit of zero temperature, the configuration σ (t + 1) minimizes
the Hamiltonian

min
σ

H (σ (t), σ, h, k) = H (σ (t), σ (t + 1), h, k) = H (σ (t + 1), σ (t), h, k) (20)

and σ (t + 2) is such that

min
σ

H (σ (t + 1), σ, h, k) = H (σ (t + 1), σ (t + 2), h, k) ≤ H (σ (t + 1), σ (t), h, k)

(21)

So the trap configurations for the dynamics C at zero temperature are the con-
figurations σ such that minτ H (σ, τ, h, k) = H (σ, σ, h, k). The cavity fields hi (σ )
have values in the set { q+rh

2 }q∈{0,1,...,k−1}, r∈{0,1} so we can define the different levels
of the cavity fields of σ , i.e., for each q ∈ {0, 1, . . . , k − 1} and r ∈ {0, 1} we define
Iq,r := {i ∈ V : hi (σ ) = q+rh

2 }. The configurations τ minimizing H (σ, τ, h, k)
have support on the sites belonging to the lowest levels of the cavity fields h(σ ).
This means that σ is a trap if hmax (σ ) := maxi∈σ hi (σ ) < h j (σ ) for each j �∈ σ . On
the other hand, in the case of random graphs, we know the distribution of the cavity
field in sites j �∈ σ . Indeed for these sites we have h j (σ ) = 1

2 (M L j (σ ) + h) where
M L j (σ ) denotes the number of missing links from j to the set σ (the support of σ ).
Due to the fact that M L j (σ ) and M L j ′(σ ) are independent variables for j, j ′ �∈ σ

with a binomial distribution, we also know the distribution of the numbers |Iq,1|
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of sites j �∈ σ with cavity field h j (σ ) = q+h
2 :

P(|Iq,1| = l) =
(

n − k

l

)
pl(1 − p)n−k−l (22)

where

p ≡ p(q, k) := P(M L j (σ ) = q) =
(

k

q

)
2−k (23)

in the case of random graph with density 1
2 . The quantity

G(σ ) := min
j �∈σ

h j (σ ) − hmax (σ ) (24)

can be called the gap of the trap.
If k = (1 + ε) log2 n with ε > 0 and if q � k we have that for large n

P(|Iq,1| = 0) = (1 − p)n−k ∼ 1 − n−ε (25)

so with large probability the lowest levels corresponding to r = 1, i.e., to sites not
in σ , are empty.

We notice that in order to really leave a trap, we have to change many
sites in a single step of the dynamics. If the changes are too few, then they
produce configurations immediately coming back to the trap. Indeed starting from
a trap σ with gap γ , denote by σ ′ the configuration obtained in a single step
of the dynamics and by l the number of changed sites, i.e., l = |{i ; σi �= σ ′

i }|.
We have that |hi (σ ) − hi (σ ′)| ≤ l+h

2 for each site i . So if l <
γ

2 − h we have
that the new cavity field h(σ ′) has the lowest levels again containing the sites of
σ and so with large probability the dynamics in the following steps will come
back in σ .

Again we can apply the Jerrum argument. If σ is almost a clique –i.e.,
hmax(σ ) is small but the maximal clique contained in s, say σ0, is of size k0 =
(1 + 2

3ε) log2 n and σ0 is not a k-gateway– with probability near to one we have a
gap of σ of order ak with a < 1 but strictly positive. This means that to escape the
trap we have an energy barrier that is a positive fraction of k2 since, if σ is not a
k-gateway, a number of sites proportional to k has to be changed in the non-empty
levels of type Iq,1.

For this reason we expect that our algorithm has a non-polynomial mixing
time of order na log n . However in the following section we will show that this non-
polynomial mixing time becomes evident only when n is very large. On DIMACS
random graphs we get better results than the other algorithms.

Moreover we can gain from our analysis of traps a more precise knowledge
of the energy landscape, suggesting improvements of our algorithm. This is the
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Table I. User times for DIMACS machine benchmarks instances

r100.5 r200.5 r300.5 r400.5 r500.5

0.01 0.09 0.77 4.47 16.83

subject of a further paper where the numerical aspects of the problem will be
discussed in more details.

5. NUMERICAL COMPARISON

In this section we briefly give some numerical results on the algorithm intro-
duced in the previous section. In particular we will discuss the performance of our
algorithm on two groups of graphs: DIMACS benchmark graphs(8) and random
graphs. A more complete numerical analysis will be given in a forthcoming paper.

5.1. Experimental Details

The algorithms, greedy G, dismantling D, Monte Carlo MC and Cavity C
are implemented in C language and performed on a 2.5GHz Power Mac G5 Quad
processors machine with Mac OS X v10.4 Tiger and 8Gb of RAM and compiled
with gcc and considering the −O2 switch. As required by the rules of the Second
DIMACS Implementation Challenge,(8) we provide in Table I the user times in
seconds performed by one processor on our computer.

5.2. Numerical Results on DIMACS Benchmark Graphs

The Center for Discrete Mathematics and Theoretical Computer Science
(DIMACS) makes available on its web site (ftp://dimacs.rutgers.edu/pub/
challenge/graph/benchmarks) a suite of 79 benchmark graphs for the max-
imum clique size problem. Such benchmarks constitute an important base point
in order to evaluate the performances of new algorithms in this topic. They were
generated by means of different criterions and the set includes:

• Random graph (Cn.d and DSJCn.d, being n the size and d the density);
• Steiner triple graph (MANNn);
• Brockington graph (brockn y, with parameter y = 1, 2, 3, 4);
• Sanchis graph (genn p0.9 x, sann 0.y z, sanrn 0.y, with parameters

x = 44, 55, 65, 75, y = 5, 7, 9 and z = 1, 2, 3);
• Hamming graph (hammingx-y with parameters x = 6, 8, 10 and y = 2,

4);
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• Keller graph (kellerx, with parameter x = 4, 5, 6);
• P-hat graph (p-hatn-x, with parameter x = 1, 2, 3);
• Pardalos graph (c-fatn-x, with parameter x = 1, 2, 5, 10);

For additional details and references the reader could see Ref. 8.
In Table II we report the results for a selection of the 37 instances belonging

to the Second DIMACS Implementation Challenge and in Tables III a selection
of the remaining 42. The tables are organized as follows. The first column re-
port the name of the instance, the following three columns its characteristics, i.e.,
number of nodes n, number of arcs m and density d. Successively, we report
the results for the cavity algorithm C in terms of best achieved value and CPU
time. The following columns are related to the values achieved by the algorithm
presented in Sec. 3. In particular, column G reports the best value achieved on 100
run of the greedy algorithm and columns D and MC report both best achieved
clique and CPU time, respectively. Note that for the sake of simplicity we do
not report the CPU time for G because it was always equal to 0.000. The last
columns of the tables are related to the results obtained by Régin(15) and Battiti
and Protasi.(1) Note that observing the computational times on DIMACS machine
benchmarks, the times listed in Ref. 1 have to be divided roughly by 4 in or-
der to be compared with ours, while the times listed in Ref. 15 can be directly
compared.

Let us close this section with some final remarks on the performances of theD
andC algorithms. First of all we want to stress that despite its simplicity,D performs
quite well in many instances, especially when the density is high and exact results
are difficult to obtain. As far as C is concerned we consider its performance quite
promising. In particular C works well on the graphs brock800 2, brock800 4,
p hat1000-3, p hat1500-2 where complete algorithms typically fail, see for
instance.(15) On such graphs our computational times are quite short. On the
other hand there are graphs like some Brockington graphs and some Sanchis
graphs, where the performance of C must be improved. In a forthcoming paper
we will analyze in more detail the algorithm C; in particular we intend to vary
the parameters β and h that in this first analysis are fixed in a rough way (say
β ∼ 2, h ∼ .8).

Note also that the results obtained by Battiti and Protasi are often similar
or better than ours, except in the case of the large random graphs, where our
algorithm is much faster.

Apart from the numerical comparisons with other algorithms we think that
one of the main interesting aspects of C is that it is a first attempt to use an algorithm
where the basic step computes the new configuration on the basis of a large number
of edges of the graph. In some sense C “sniffs” around before computing the new
configuration. Moreover it moves on unfeasible configurations (i.e. uncomplete
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Table IV. Results for random graph with density d = 0.5

C G D MC

Random graph n m d k Time(s) k k Time(s) k Time(s)

tbb128.5 128 4061 0.500 11 0.010 7 8 0.000 11 7.520
tbb256.5 256 16310 0.500 12 0.510 9 9 0.000 11 30.750
tbb512.5 512 65457 0.500 13 1.150 9 10 0.000 12 131.980
tbb1024.5 1024 262084 0.500 15 2.170 10 9 0.060 13 589.350
tbb2048.5 2048 1048289 0.500 16 9.280 11 10 0.222 14 2564.550
tbb4096.5 4096 4192863 0.500 17 73.840 12 11 1.870 15 11061.950
tbb8192.5 8192 16778527 0.500 19 311.950 13 11 8.130 16 50238.440
tbb16384.5 16384 67106538 0.500 19 170.470 14 11 33.850 17 216040.910

subgraphs), avoiding in this way many bottlenecks in the configuration space when
only complete subgraphs are permitted.

5.3. Numerical Results on Random Graphs

In order to give a deeper analysis of the performance of our algorithm on
random graphs, our experiments were extended to a collection of big instances built
by mean of a random graph generator. In fact, even though the DIMACS collection
includes some random instances, the number of nodes are no greater then 4000.
For this reason, we implemented a random graph generator able to build instances
with a fixed number of nodes and density limited only by the space occupancy
of the graph on the physical memory existing on the computer. Our choice was
to build a collection of fifteen instances with n = 2i for i = 7, 8, . . . , 14 i.e., for
n ∈ {128, 256, 512, 1024, 2048, 4096, 8192, 16384} and density d = {0.5, 0.9}.
The name of the instances considers first the prefix tbb, then the number of nodes,

Table V. Results for random graph with density d = 0.9

C G D MC

Random graphs n m d k Time(s) k k Time(s) k Time(s)

tbb128.9 128 7315 0.900 34 0.080 24 29 0.000 30 5.860
tbb256.9 256 29392 0.900 44 1.310 28 37 0.000 36 23.390
tbb512.9 512 117794 0.900 56 3.190 37 46 0.010 42 98.940
tbb1024.9 1024 471440 0.900 67 9.720 42 49 0.060 48 445.620
tbb2048.9 2048 1886256 0.900 76 35.740 49 55 0.222 54 1958.010
tbb4096.9 4096 7548970 0.900 84 41.780 56 57 1.860 59 8307.030
tbb8192.9 8192 30198965 0.900 90 182.350 61 63 8.120 66 35811.920
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Table VI. Comparison between C and Cliquer on some random in-

stances

C Cliquer

Random graphs k Time(s) k Time(s)

tbb128.5 11 0.010 11 0.000
tbb256.5 12 0.510 12 0.130
tbb512.5 13 1.150 14 10.540
tbb1024.5 15 2.170 15 1769.910
tbb128.9 34 0.080 34 61.570

the density and finally the extension clq.b. Again, note that the instances follows
the rules provided by the DIMACS.

These instances are available for further research on the web on the home
page of one of the co-author.4

On the smaller graphs we obtained the certified values of the clique number
by using the program Cliquer. This is a branch and bound complete algorithm
given in Ref. 14. As it is clear from the Table VI the computational times of
Cliquer are too long to apply it to the larger instances.

In Tables IV and V T are reported the results on our instances, for d = 0.5
and d = 0.9 respectively.
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12. M. Mézard, G. Parisi, and R. Zecchina, Analytic and algorithmic solution of random satisfiability

problems. Science 297:812–815 (2002).
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